

Airfield Capacity Prof. Amedeo Odoni

Istanbul Technical University

Air Transportation Management

M.Sc. Program

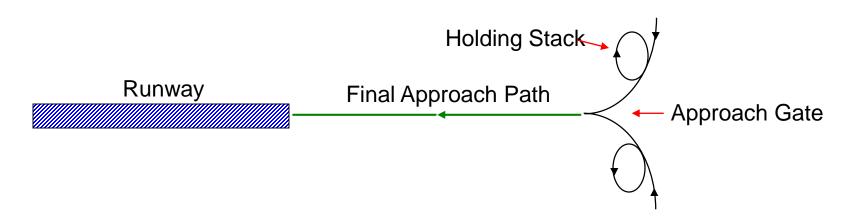
Air Transportation Systems and Infrastructure

Module 10

May 27, 2015

Airfield Capacity

Objective:


 To summarize fundamental concepts re. airfield capacity and related issues

Topics:

- Definitions of capacity
- Factors affecting capacity
- Separation requirements
- Capacity envelopes and capacity coverage charts
- Declared capacity and slot coordination

Reference: Chapter 10, de Neufville and Odoni

The Principal Bottleneck

- The runway systems of the world's busiest airports act usually as the principal bottlenecks of the air transport system's infrastructure
- While other components of infrastructure may also occasionally act as bottlenecks, the capacity of runway systems is the most "resistant to expansion"

Definitions: Runway Capacity*

□ Maximum Throughput (or Saturation) Capacity

The expected ("average") number of runway operations (takeoffs and landings) that can be performed in one hour without violating air traffic management (ATM) rules, assuming continuous aircraft demand.

Declared Capacity [tied to Level of Service (LOS)]

- The capacity per hour used in specifying the number of slots available for schedule coordination purposes; used extensively outside US; no standard method for its determination; no generally accepted LOS; *typically set to about 85-90% of saturation capacity*; may be affected by stand/gate capacity, passenger terminal capacity, etc.
- * These definitions can be applied to a single runway or to the entire complex of runways at an airport.

Factors Affecting Runway Capacity

- Number and layout of active runways
- Separation
 requirements
 (longitudinal, lateral)
- Weather (ceiling, visibility)
- Wind (direction, strength)
- □ Mix of aircraft

 Mix and sequencing of operations (landings, takeoffs, mixed)

Quality and
 performance of ATM
 system (including
 human factor -- pilots
 and controllers)

Runway exit locations

□ Noise considerations

Role of ATM Separation Requirements

- Runway (and airfield) capacities are constrained by ATM separation requirements
- Typically aircraft are separated into a small number (4 or 5) of classes according to their maximum takeoff weight (MTOW)
- Example: ICAO classification
 - Super Heavy (SH): Airbus 380 [560 tons], Boeing 747-8
 - Heavy (H): 136 tons \leq MTOW [and <SH]
 - Medium (M): 7 tons \leq MTOW < 136 tons
 - Light (L): MTOW < 7 tons</p>
- Required separations (in time or in distance) are then specified for every possible pair of aircraft classes and operation types (landing or takeoff)
- Example: "arrival of H followed by arrival of M requires 5_{age 6}

Aircraft Classes for Terminal Area ATM Purposes

	0 tons	5	50 to	ons	10	0 ton	IS	150 1	tons	200	tons	•••
MTOW	EMB120		B737		A321	B757			B767		A330	
ICAO	0 7 L 7			Μ]	136	136		Н		
FAA	0 S 19	19		Μ	1	16	116			н		
UK-5	0 S 14	14 L 40	40	LM	104	104	UM	162	162	Н		

"Super Heavy": A380 (560 tons), B747-8 (448 tons)

Page 7

ICAO Recommended Separations*: Arrival - Arrival

	TRAILING A/C						
LEADING A/C	Super Heavy	Heavy	Medium	Light			
Super Heavy	4	6	7	8			
Heavy	4	4	5	6			
Medium	3	3	3	5			
Light	3	3	3	3			

* Separations shown in n. miles (1 n.mile =1.852 km)

- In addition, leading aircraft must be safely out of runway before the trailing aircraft can touch down on the runway
- Separations behind SH and H aircraft are greater because of the "wake vortex" (or "wake turbulence") effects

ICAO Recommended Separations*: Departure - Departure

	TRAILING A/C					
LEADING A/C	Super Heavy	Heavy	Medium	Light		
Super Heavy	150	150	180	180		
Heavy	90	90	120	120		
Medium	90	90	90	90		
Light	90	90	90	90		

* Approximate separations in seconds (vary according to national practices)

Numerical Example: Inputs

Aircraft Characteristics							
Туре	Mix (%)	Approach Speed (knots)	Runway Occupancy Times (sec)				
Heavy (1)	20	140	60				
Medium (2)	50	120	55				
Light (3)	30	100	50				

Single Runway; Arrivals only

Length of Final Approach = 5 n. miles

Separation Requirements

	Trailing Aircraft					
		1		3		
Leading	1	4 n.m.	5 n.m.	6 n.m.		
Aircraft	2	3 n. m.	3 n.m.	4 n.m.		
	3	3 n.m.	3 n.m.	3 n.m.		

Numerical Example [2]

Matrix of average time intervals, <i>t_{ij}</i> (in seconds), for			2	
all possible pairs of aircraft	1	[113	181	226
Intervals, t_{ij} (in seconds), for all possible pairs of aircraft types: $[t_{ij}] =$	2	87	100	154
L° <i>lj</i> J	3	87	100	118
a particular aircraft pair will		1	2	3
a particular aircraft pair will occur: $[p_{ij}] =$	1	0.04	0.1	0.06
$[p_{ii}] =$	= 2	0.1	0.25	0.15
- - <i>ij</i> -	3	0.06	0.15	0.09

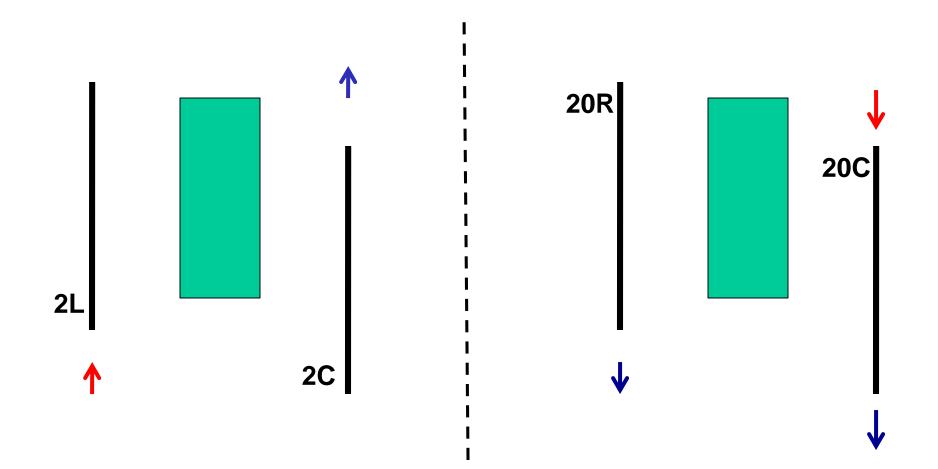
Numerical Example [3]

→ By multiplying the corresponding elements of the matrices [p_{ij}] and [t_{ij}] we can compute the average separation (in seconds) between a pair of aircraft at the runway in question.

 Max throughput/saturation capacity typically stated as no. of aircraft per hour

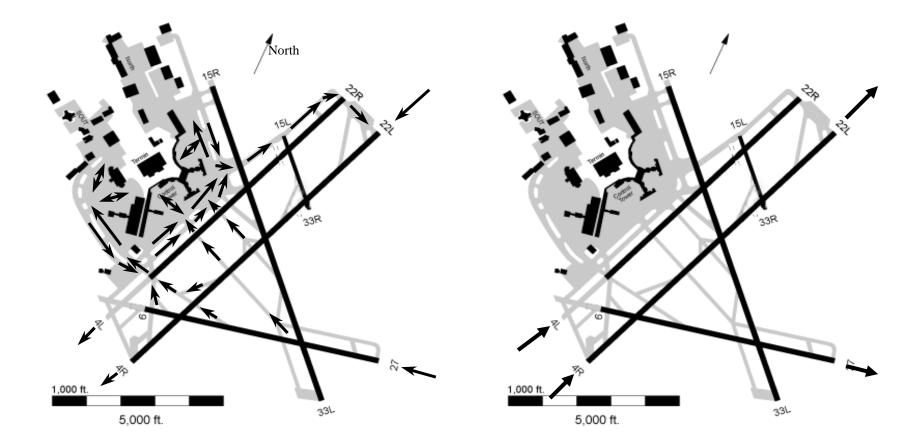
The Concept of the "Runway Configuration"

- Multi-runway airports can operate in any one of many possible "configurations".
- □ Each configuration is described by:
 - The set of runways which are active
 - The type of operations (arrivals only, departures only, or mixed) assigned to each of the active runways
- Example: A possible configuration at IST consists of "05 for arrivals, 35L for departures" (denoted as "05|35L")
- Weather and wind direction and strength play a major role in the selection of a configuration – occasionally allowing a single choice only
- But air traffic managers often have the option of selecting among many alternative configurations (e.g., in calm winds)


Capacity Varies with Runway Configuration

- The capacity of a runway system depends on the runway configuration in use, which, in turn, depends on weather conditions and wind
 - At many airports, where weather is variable airside capacity can also be highly variable and difficult to predict even a few hours in advance

Istanbul Atatürk (IST) Airport


Singapore: Example of Two Configurations

High-capacity configurations in opposite directions, Boston/Logan (VMC)

27-22L | 22R-22L

4R-4L | 4R-4L-9

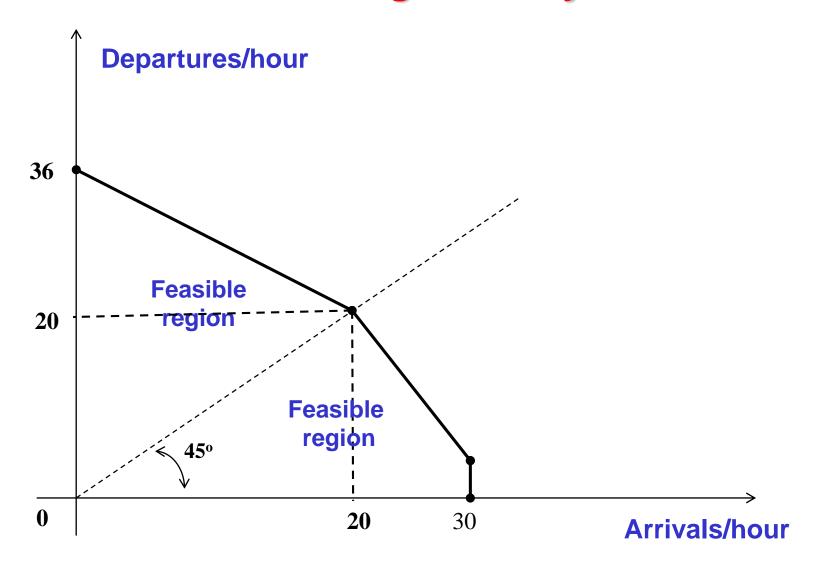
Parallel Runways (IFR)

Separation between runway centerlines	Arrival/ arrival	Departure/ departure	Arrival/ departure	Departure/ arrival
Closely-spaced 700/1200 – 2500 ft (213/366 – 762 m)	As in single runway	As in single runway	Arrival touches down	Departure is clear of runway
Medium-spaced 2500 – 5000* ft (762 – 1525* m)	1.5 nmi (diagonal)	Indep' nt	Indep' nt	Indep' nt
Independent > 5000* ft (> 1525* m)	Indep' nt	Indep' nt	Indep' nt	Indep' nt

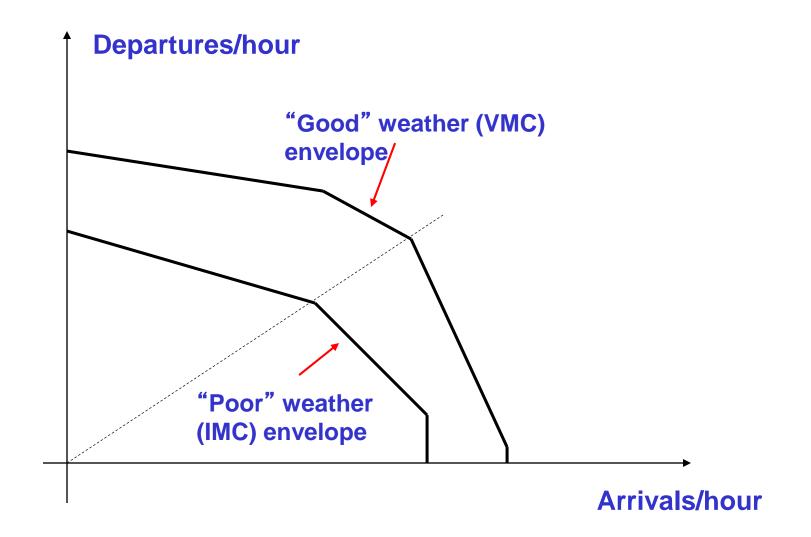
* 3400 ft (1035 m) or 4300 ft (1310 m) are alternative limits; 3000 ft (915 m) stated as feasible by ICAO and FAA, subject to conditions

Toronto Lester B. Pearson International

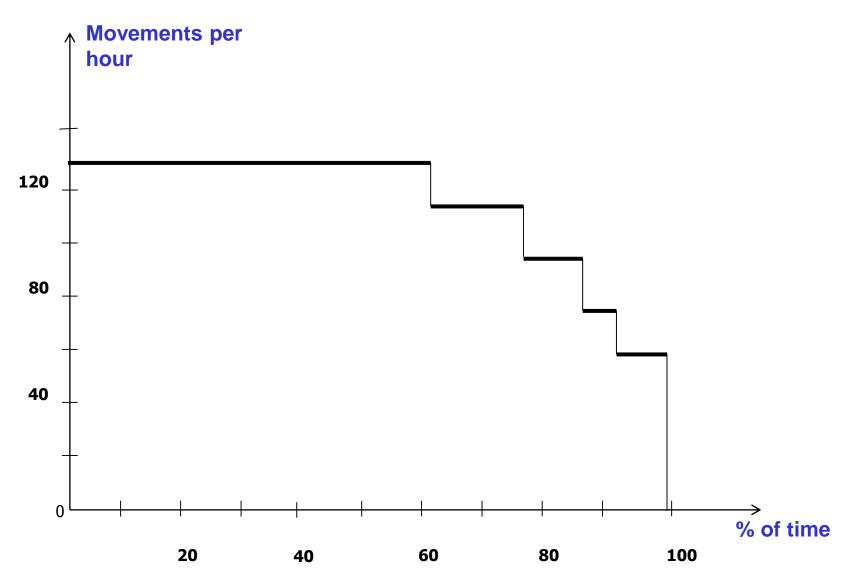
LBPIA: Single-Runway and Dedicated Two-Runway Capacities


Type of Operation	Example Runway Configuration	IMC	VMC
Single Runway, Mixed Operations	Arr 05, Dep 05	48	56
Dedicated Dependent East/West Operations	Arr 06R, Dep 06L	60	70
Dedicated Independent North/South Parallel	Arr 15R, Dep 15L	63	65
Operations	Arr 33L, Dep 33R	68	75
Dedicated Independent East/West Parallel	Arr 05, Dep 06L	80	82
Operations	Arr 23, Dep 24L	80	82

Summarizing Runway System Capacity


Capacity envelopes: For a specified runway configuration, show what combinations of arrivals and departures are feasible to perform per hour or per 15 minutes

Capacity coverage charts: For a specified long period of time (one year, one month) show how much total capacity is available at the airport for what percentage of time


Typical capacity envelope ("Pareto envelope") for a single runway

Visual Meteorological Conditions (VMC) vs. Instrument Meteorological Conditions (IMC)

Annual Capacity Coverage Chart: Boston/Logan

Capacity Coverage Chart (CCC)

- The CCC summarizes statistically the supply of airside capacity
- CCC requires a capacity analysis for all weather/wind conditions and runway configurations
- "Flat" CCC implies predictability and more effective utilization of airside facilities
 - Operations (takeoffs and landings) can be scheduled with reference to a stable capacity level
 - Fewer instances of under-utilization and overutilization of facilities

Increasing Runway Capacity

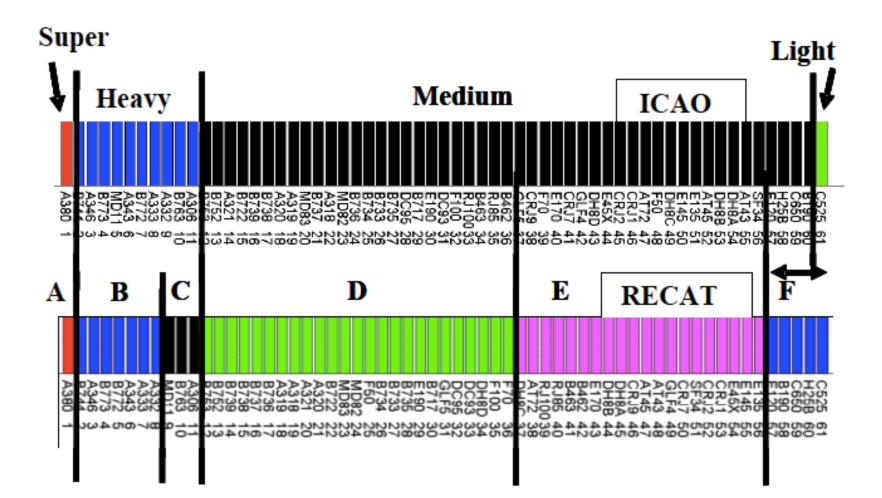
- At high levels of utilization, even small increases in the capacity of the runway system can have a large impact on air traffic delays
- This is the motivation behind many of the current efforts of airport operators and of ANSPs (e.g., NextGen and SESAR)
 - Reducing, even marginally, separation requirements (e.g., at many US and several European airports)
 - Improved precision in separations, especially on arrival
 - Sequencing of landing aircraft to minimize the use of wake vortex separations (e.g., LHR, Denver, Dallas/Ft. Worth)
 - Intersection departures to reduce separations between departures (e.g., Munich, LHR)
 - Time-based inter-arrival separations in headwinds (LHR)
 - Re-definition of aircraft classes (RECAT)

Page 26

IFR Separation Requirements: Single Runway (USA)

Arrival-Arrival:

(1) Airborne separations on final approach (nmi):


Trailing aircraft

		н	L or B757	S
Looding	Н	4	5	6*
Leading aircraft	B757	4	4	5*
	L	2.5	2.5	4*
	S	2.5	2.5	2.5

* Applies when leading aircraft is at threshold of runway

(2) Leading aircraft must be clear of the runway before trailing aircraft touches down

Current ICAO vs. Proposed RECAT Classes

Need for More Capacity

- ATM innovations will result in only limited increases in *runway system* capacity at the busiest airports [e.g., +10% – 20%(??) over 20 years]
- Quantum increases in capacity can only come from new airports or new runways at existing airports
- Practically no new primary airports planned in North America and Western Europe; several in Asia (India, China, Middle East)
- New runways are planned at a very few busy airports in Europe and US and at many major airports in Asia

Range of Airfield Saturation Capacities

- The saturation capacity of a single runway varies greatly among airports, depending on ATM rules and performance, weather conditions, traffic mix, operations mix and other factors identified earlier
- At major commercial airports, in developed countries, the typical range per runway in good weather conditions is
 - -25-44 arrivals per hour for arrivals-only operations
 - 30 55 departures per hour for departures-only ops
 - 30 56 movements per hour for mixed ops
- Depending on the number of runways and the airport's geometric configuration, total airfield capacity of major commercial airports ranges from 30 per hour to 260+ per hour
 Page 30

Capacity of Taxiways

- The capacity of the taxiway system is rarely, if ever, the capacity bottleneck of major airports
- However, some specific parts of the taxiway system may consistently act as "hot spots" (points of congestion), especially at older, limited-area airports
- Local geometry and traffic flows determine the location of these hot spots
- The blocking of groups of stands by a single lane passage is one of the most common examples of such taxiway hot spots
- Much more common problem: long taxiing times (15+ minutes) associated with surface movements, as the airfields and runway systems of busiest airports become ever more expansive and complex

Madrid Barajas Airport (MAD)

Capacity of Aprons/Stands

- Often a tough problem!
- Different stands can accommodate different sizes of aircraft
- □ Remote vs. contact stands
- □ Shared use vs. exclusive use (airlines, handlers)
- □ Dependence among neighboring stands
- □ Static capacity: No. of aircraft that can be parked simultaneously at the stands. (Easy!)
- Dynamic capacity: No. of aircraft that can be accommodated per hour. (Can be difficult to compute.)

Stand Blocking Time (SBT)

- Scheduled occupancy time (SOT) [30 minutes to 4 hours, except for overnight stays]
- \Box Positioning time (PT) [5 20 min for in-and-out]
- Buffer time (BT) [can be more than 1 hour at some locations]

SBT = SOT + PT + BT

No. of aircraft served by a single gate rarely exceeds 6 – 7 per day and can be significantly less for gates serving long-range flights

Questions? Comments?